Anaerobic activation of p-cymene in denitrifying betaproteobacteria: methyl group hydroxylation versus addition to fumarate.
نویسندگان
چکیده
The betaproteobacteria "Aromatoleum aromaticum" pCyN1 and "Thauera" sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted "A. aromaticum" pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with "Thauera" sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. "A. aromaticum" pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of "Thauera" sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA.
منابع مشابه
Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product.
Recent studies of anaerobic toluene catabolism have demonstrated a novel reaction for anaerobic hydrocarbon activation: the addition of the methyl carbon of toluene to fumarate to form benzylsuccinate. In vitro studies of the anaerobic benzylsuccinate synthase reaction indicate that the H atom abstracted from the toluene methyl group during addition to fumarate is retained in the succinyl moiet...
متن کاملBenzylsuccinate Formation as a Means of Anaerobic Toluene Activation by Sulfate-Reducing Strain PRTOL1.
Permeabilized cells of toluene-mineralizing, sulfate-reducing strain PRTOL1 catalyzed the addition of toluene to fumarate to form benzylsuccinate under anaerobic conditions. Recent in vitro studies with two toluene-mineralizing, denitrifying bacteria demonstrated the same fumarate addition reaction and indicated that it may be the first step of anaerobic toluene degradation. This study with str...
متن کاملVersatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions†
Anaerobic metabolism of hydrocarbons proceeds either via addition to fumarate or by hydroxylation in various microorganisms, e.g., sulfate-reducing or denitrifying bacteria, which are specialized in utilizing n-alkanes or alkylbenzenes as growth substrates. General pathways for carbon assimilation and energy gain have been elucidated for a limited number of possible substrates. In this work the...
متن کاملEnzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins
Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria (SRB) via "reverse methanogenesis" and is catalyzed by a homolog of methyl-co...
متن کاملAnaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.
Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorgan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 80 24 شماره
صفحات -
تاریخ انتشار 2014